
Drive and Control Technology

The world of the PLC � CL150

CL150

Components

Programming
with WinSPS

Structured
Programming

Testing

Documentation

The world of the PLC �
CL150
1070 072 346-101 (01.04) GB

E 2001

All rights reserved by Robert Bosch GmbH,
including applications for protective rights.

Reproduction and distribution by any means subject to our
prior written permission.

Discretionary charge 10.� EUR

3

&

=

T1

=

&

&>=

R

Contents

=

The program WinSPS

Logic & more

Programming with WinSPS

The CL150
p. 06

p. 13

p. 30

p. 42

>=

Z1

=&
Appendix

p. 61

&

Structured programming
p. 55S

4

5

 This manual addresses skilled

 personnel with PLC
know�how and
technicians who are
familiar with basic
PLC programming.

The manual will guide you through
 your first PLC steps with CL150.

This manual introduces the
Bosch CL150 controller and
provides the know�how
required for handling and
utilizing the CL150.

It shows you how to commission
the CL 150 and start the
programming tool WinSPS.
You will be familiarized
with the PLC instructions
of the CL150 and use
them in a WinSPS
sample program.

Testing and debugging the
program after it has been
created is often a rather

time�
consuming aspect in PLC
programming.
This manual will show you
how to test and debug your
program directly within the
programming environment
in combination with
the CL150.

 The symbolic and structured
programming methods
 presented in this
 manual show you how
 to efficiently utilize
 the controller.

WinSPS

Complete programming package
for Windows95, 98 and NT

Project management,
creation of programs,
Online testing, documentation

Programming in IL, LD, FUD and
SFC in accordance with
DIN EN 61131

Multiuser functions for working in
project teams

Multitasking for parallel program
processing

Single−user and networking
solutions

6

The CL150 is an economic and
compact controller of the Bosch
Programmable Logic Controllers
(PLC) series. The CL150 is
small, efficient and can be used
for fast controlling tasks, for
example in the automotive
range, small conveying systems
and in systems for the printing
and paper industry.

This controller represents a cost
efficient solution for even the
smallest systems. With an
enhancement of the decentralized
I/O system components, or in a
network as decentralized
controller, it can handle simple
tasks in assembly lines as the unit
offers very good networking
capabilities and a large

instruction scale. The CL150 is
available in a number of version
for an optimal and efficient
adaptation to the tasks at hand:
dependent on the equipment,
it comes with supplementary
analog inputs and outputs or
with optional operation within
a Fieldbus network.

The CL�150

CL�150

Basic version of the compact
controller with 8 inputs and
8 outputs

Equipment variations with analog
I/Os and connection to Fieldbus
systems

Connection for the components
of the I/O system B~IO

Extensions

Customization of the given
I/O structure with modules of
the system B~IO M−

In−line operation with a
maximum of 16 modules

7

Basic equipment of the CL150

The compact controller

• is available in several
versions with analog and
digital I/Os, an additional
serial interface and a
Fieldbus extension,

• is equipped with an
expansion slot for
I/O modules of the
B~IO system and

• expandable with up to
16 modules.

The controller has two internal
memories − one of 64 KB RAM
and one 64 KB Flash EPROM �
which can be used individually
or combined.

A battery buffers the controller�s
internal RAM against power
failure and switching off, thus
protecting the remanent areas for
markers, timers, counters, data
fields and data modules.

B~IO modular, available I/Os

Digital inputs 8 DI 16 DI 16 DI-3
 8 inputs 16 inputs 16 inputs

Digital outputs 8 DO 16 DO 8 DO/2A 8 DO R
 8 outputs 16 outputs 8 outputs 8 relay-outputs

0,5 A 0,5 A 2,0 A 2,0 A

Combination module, 8 DI/DO
digitale I/O 8 connections, bit utilization as I/O

 0,5 A

Analog I/O 4 AI_UI 4 AI_UIT 4 AO_I 4 AO_U
 4 inputs, 4 inputs, 4 outputs, 4 outputs,

 12 bit 14 bit 16 bit 12 bit
 0�5 V, 0�10 V, 0,1 V, ±1 V, � 0�10 V, ±10 V

 ±0,5 V, ±10 V ±10 V

8

The basic devices

CL150

The CL150 has
• 8 digital inputs 24 VDC,
• 8 digital outputs

24 VDC/0.5 A,
• 2 fast 32−bit counters or
• 3 interrupt/alarm inputs,
• one programming interface

V24, BUEP19E protocol.

CL151

The CL151 has
• 16 digital inputs 24 VDC,
• 8 digital outputs

24 VDC/0.5 A,
• 2 fast 32−bit counters or
• 3 interrupt/alarm inputs,
• Real−time clock,
• one programming interface

V24, BUEP19E protocol,
• a second serial V24

interface, 20 mA passive,
protocol BUEP19E and
BUEP03E.

Fieldbus interface

The CL150 and CL151 are
available with the following
Fieldbus interfaces:
• PROFIBUS−DP,
• CANOpen,
• InterBus−S and
• DeviceNet.
All devices with Fieldbus
interface are equipped with
the following features:
• 8 digital inputs 24 VDC,
• 8 digital outputs 24

VDC/0.5 A,
• 2 fast 32−bit counters or
• 3 interrupt or alarm inputs,
• Real−time clock,
• Programming interface V24,

protocol BUEP19E
• CL151: second serial

interface and BUEP03E
protocol

• Fieldbus interface.

9

of CL150 and CL151

CL150A

The CL150A has
• 16 digital inputs 24 VDC,
• 8 digital outputs

24 VDC/0.5 A,
• 2 fast 32−bit counters or
• 3 interrupt/alarm inputs,
• 2 analog inputs 0−10 V,

10 bits,
• 1 analog output ± 10 V, 0−20

mA, 12 bits,
• Real−time clock,
• one programming interface

V24, BUEP19E protocol.

CL151A

The CL151A has
• 16 digital inputs 24 VDC,
• 8 digital outputs

24 VDC/0.5 A,
• 2 fast 32−bit counters or
• 3 interrupt/alarm inputs,
• 2 analog inputs 0−10 V,

10 bits,
• 1 analog output ± 10 V,

0−20 mA, 12 bits,
• Real−time clock,
• one programming interface

V24, BUEP19E protocol,
• a second serial V24

interface, 20 mA passive,
protocol BUEP19E and
BUEP03E.

10

CL150 Controller Installation
 in the switchboard cabinet
• Mounting on rail or with

screws
• Vertical, horizontal or lying

mounting

Connecting and wiring
the PLC

• Fuse the voltage supply on
primary side

• Connect the CL150 controller
to the protective ground
system PE by installing it on a
grounded mounting rail

• Dimension the voltage supply
for maximum current load

• Maximal permitted voltage
fluctuation +20%, −15%

• Always use a power supply
with safe separation compliant
with DIN EN 60 742.
Additional protective measures
are not required if conforming.

• Wire the 24−V lines separately
from lines carrying higher
voltages.

The modules are supplied with
removable plug terminals.
Consequently there is no need
to disconnect the wiring when
replacing the controller or a
module.

24V Sensor
X21A

X11A

5 6 7

11

Expanding the CL 150 with I/O modules
Switch off the signal voltages and
the external power supply of the
controller before you connect
modules.

When handling the controller
or modules, make provisions
for sufficient protection against
electrostatic discharge that might
destroy the controller or the
module.

Manual addressing

The start address of all modules
is customized in the WinSPS
software.

In the WinSPS program, call the
editor and select the menu
�Edit −> I/O configuration (OB3)�.

The PLC program evaluates the
signal connections of and 8−input
module, for example, with start
address E2 via operand addresses
I2.0 to I2.7.

Advantage of manual addressing: The number of connected
modules is fixed, that is, a
disconnected module is
recognized as error.

Automatic addressing
The CL150 operating system automatically assigns the start
addresses to all connected I/O modules.

The module address is dependent on the sequence it is
arranged in.

Start address for input modules is 2, for output modules it is 1.

The data length of the module is taken into consideration; word
length modules are assigned to an even−numbered address.

Modules equipped with both inputs and outputs have the same
input/output start addresses.

12

13

The program WinSPS
WinSPS at a glance

Default settings

Determining data related to
the project and controls
• Project path and names,
• Controller types
• File names
• Interface configuration
Customizing the WinSPS
startup parameters
Licensing information

Editor

Creating the PLC program
with the
• Instruction List (IL)
• Function diagram (FBD)
• Sequential Function Chart

(SFC)
• Contact plan (LD)
Interface test
Transferring the programs
Managing PLC memory
utilization
Creating symbol lists and
cross−reference lists
Printing out all PLC
configuration data

Monitor

Testing the PLC program with
the CL150
Monitoring
• the running PLC
• the program status
• data changes
• the I/O image
Retrieving module calls
Changing the switch state of
inputs, outputs and markers
in the PLC.

14

Installing WinSPS

Removing
WinSPS from
the hard disk
drive, save for
the licensing
information

Valuable
information about
WinSPS

Starting
WinSPS

Ordering a
WinSPS license
per fax

PDF files of the
controller
programming
manuals and
information on
SFC and PLC
programming

Start the installation program
�SETUP.EXE� from the
CD−ROM.

You can select �SETUP.EXE�
with the Explorer and start it
per mouse click. Follow the
instructions of the installation
program.

The installation program unpacks
and copies all files to the hard
disk drive. The adjacent icons
will be created in the �Bosch�
program group.

You do not require a license in
order to be able to work with
WinSPS and the CL150.
However, if you want to use the
program in other controllers also
you must order a license key
from Bosch.

Uninstalling WinSPS
Always remove a licensed
WinSPS version with the
program �Uninstall WinSPS�.
Initialize it with a click on the
corresponding icon in the Bosch
program group. Do not use the
Explorer to remove WinSPS.
This will delete all existing
licensing information.
To recognize the license key, the
new WinSPS software must be
installed in the same directory as
the previous version.

Programming license
You do not require a license in
order to be able to work with
WinSPS and the CL150.
However, if you want to use the
program in other controllers as
well you must order a license key
from Bosch. You can obtain
licenses free of costs and for
time−limited demo versions, as
well as for full versions for
single−user and networking
applications.

You can direct your license
application to Robert Bosch
GmbH by fax. A dialog box that
is opened with the initial startup
of WinSPS offers you infor−
mation on the procedure.

All features of the WinSPS
software will be fully enabled
after you have entered the Bosch
license key.

The license is valid only for the
installed WinSPS program. If
you want to use a second
WinSPS installation, you must
either order another license or
transfer the existing license to the
second version. This prevents a
startup of the current WinSPS
installation until you have
returned the license to it.

You can use the �License� button
in the WinSPS program window
�WinSPS−project customization�
for license transfer and changes.

15

Connecting the PC to the CL150

You can use the Bosch serial
cable K19 (order no.
1070 077 753) to transfer data
between the CL150 and a PC.
Connect the cable to a PC serial
interface COM1 to COM4. The
respective interface is selected in
the WinSPS window �Project
settings� −> �Connecting the PLC
via:�.

Customizing communication
parameters
The respective interface is
selected in the WinSPS window
�Project settings� −> �Connecting
the PLC via:�. The transfer rate
of the CL150 is set fixed to
19,200 baud.

Interface test
The WinSPS software can
test the function of the data
communication and query the
transfer rate settings. This
interface test is started in the
WinSPS window �Editor�, under
�Controller −> Interface test�.

WinSPS tests the communication
and returns the transfer
parameters found.

If the data communication is
disrupted,
• check whether the controller

is switched on
• and whether all plugs are

properly connected. The cable
should be connected to the
9−pin X31 socket of the
controller and to a PC serial
interface.

• Check whether the PC detects
the serial interface. You must
restart Windows when you
initially use the interface or if,
for example, you swap the
serial interface for the mouse
and the controller connection.
The Windows startup sequence
recognizes active interfaces
and assigns the connections
accordingly.

PLC PC

1
2

3

5

1
2

3

5

6

9

6

9

TxD

RxD

GND

Shield

16

Changing to
monitor mode

Changing to
the editor

Closing the
program

Enabling
the program
license

Calling Help

Con________figuration
In your configuration settings
you create or select the project
path and name, as well as the
controller name and type. Blocks
and date are created for a
project:
• a program module for the

controller program,

• the Organization Module
OM1 for starting the PLC
program,

• a Data Module,
• a symbol file for the

declaration of blocks and
symbol operands.

Creating project directories

A directory path for the project

The path to the WinSPS program
libraries

Editing controller and project information

Project name, directory name for the
controller and the controller type
CL150

Insert the file names

The name of the module initially
programmed in the editor

Name of a data module

A name for the project symbol file

Call the editor
Files are created after confirmation

File structure in CL 150 WinSPS automatically creates all
required directories after the
query. You can choose names
freely. It is important, however,
that you subsequently enter the
correct names in the symbol file.

Starting WinSPS

17

The Editor

File editing tools Loading the open module and
change to the Monitor view

 Save Edit texts Select the program�
ming language

Instructions for
structuring the Changing to
network the monitor

WinSPS provides the following
files for your program
organization and documentation.

Symbol files for symbolic
addressing and configuring the
PLC program

Text files for comments and
documentation

Operand and fixing files for the
program test

PLC program modules for a
library, for direct implementation
into a PLC program.

Customizing the Editor view
You can switch the symbol bars
and the network display on or off
via menu item �View�. Actuated
menu items are indicated by
WinSPS with a check mark.

Menu bar �

File selection �

Network �
display

Input field �

Symbol �
window

Status bar �

18

Creating a program
Customizing the symbol file
In the symbol file you can
declare the symbolic names for
the operand.

Load the symbol file
with the default file
name into the editor.

The editor checks the syntax of
all inputs and automatically
formats error−free entries.

The blocks are assigned the file
name under which they are
stored. You must enter the
following files:
• �org_bau.pxo�, for the

organization module OM1
• �program1.pxo�, for the

program module FC0.

WinSPS also requires the data
module �dat_bau�, because it has
been entered in the default
setting. You do not need to edit
the module at this point.

For programming with symbolic
operands you declare a symbolic
name in the symbol file for each
absolute operand such as I0.1 or
M0.1.

Saving the symbol
file.

Symbol

 Save

19

Programming the Organization Module OM1
The Organization Module OM1
is the first program module to be
programmed. Controlling of the
program schedule is a major task
of OM1. The PLC program is
edited in another program

module that is called by OM1.

The module call instruction is
declared in the IL.
The instruction �CM� cannot be
displayed in the FBD.

 IL LD FBD

WinSPS relieves you of
standard tasks
The file selection window
displays the name of the open
file.

org_bau.pxo

New program files are
automatically opened in WinSPS
with a comment header that
displays project information.
Dependent on the file type,
WinSPS supplements the file
with additional text and program
entries.

The program call declaration is
entered in the editor

; Version: 1.0
 ;

 ; Program module file
 ;

 ;
> CM FC0 ; Call of program module FC0
 EM

WinSPS immediately checks
any program entry. While the
cursor still points to the row,
WinSPS automatically formats
the program instruction if the
entry is free of errors.

At the beginning of the
command line WinSPS marks
errors and alerts with an
abbreviated error indication.
After the cursor is positioned on
the line, the status bar displays
information on each selected
line.

Alerts have an informative
character and do not have to be
remedied. However, they can
indicate logical errors that might
cause serious disruptions of the
program cycle.

Save the Organi�
zation Module OM1
as �org_bau.pxo� Save

20

Creating the program
module FC0
The second program module,
namely FC0, is called up by the
organization module OM1. It
contains the PLC program.

Multiple program blocks are
created for large projects to
allows separate programming
and testing of individual
functions in the PLC program.

A new FC0 module must be
created. You can specify
�program1.pxo� as file name.

Creating and opening the file
Enter the new file name in the
file selection window and
confirm with Enter.

Expand the file selection window
and select the file.

Splitting IL in networks
Split the program into networks.
You can then edit it in IL and in
FBD.

The network sequence
corresponds with the workflow
of the system. However, it can
also be selected differently.

• Switching to the network view
with �View −> Networks�

• Splitting the new IL program
into single networks

 Separate the network

The instruction �EM� is moved
to a separate network because it
cannot be displayed in FBD.

All program instructions as from
the cursor position are moved to
a new network. The FBD
program is created in the first
network.

Changing the network

You can return to the previous
network with a click on the up
arrow button. As an alternative,
you can use the key shortcut
�Ctrl + PageUp�.

Changing the programming
language to FBD

WinSPS switches to the FBD
view only if the instruction
sequence in the expanded
network can be viewed in FBD.
Otherwise, the status bar displays
the message �Cannot display row
in FBD PI no.: 1�. �PI� points to
the first row of the program
instruction that cannot be
compiled.

The symbol window
The program editor lets you
change the size or completely
hide the symbol window by
moving the separating line
towards the input box via mouse
button. The symbol window
displays the symbolic names of
all operands in the edit box.
WinSPS continuously updates
the symbolic names.

program1.pxo

ORG_BAU.PXO

PROGRAM2.PXO

 IL LD FBD

21

Networks in FBD

The cursor must be positioned
on a new row you want to edit in
the FBD input box. You can
create and edit single blocks
using the elements of the FBD
toolbar.

To split the networks in FBD,
call the network commands in
the menu �Edit −> Network
instructions�. A network toolbar
is only available in IL.

The new networks are inserted
above or below the current
network.

Inserting a logical AND
WinSPS creates
networks using the
two elements �&� and
�=�.

Inserting additional inputs
In order to add
an input pin, the
cursor must be
positioned on it.

Naming I/Os

Declare the operand. The cursor
must be positioned in the name
box of the pin. Hit enter to move
to the next field.

Negating inputs
To negate an input,
the cursor must be
positioned on the
input pin.

Naming the network
Insert a name in the network
row, for example, �Switch
traffic lights to red�.
Save the program.

Inserting RS/SR elements
Instead of SR, �=� elements are
used in some networks.
Dependent on the logic result,
this allows you to set or reset
outputs, markers and similar.

Inserting SR elements.
The cursor must
be positioned on the
cross�link leading the
�=� element.

To insert further RS or SR
elements, position the cursor
on the cross−link leading the �=�
or RS/SR element and insert the
RS or SR element.

If you want to replace �=� with
an RS/SR element, insert the RS
or SR element and then delete
the �=� element. Click on the �=�
element and delete it with the
�DEL� key.

FBD toolbar

Network no. 1

22

Downloading the program to the controller

Do not test your program in a
unit that is currently occupied by
other tasks. The program might
switch outputs and as a result
create unexpected switching
states.

Before you download the
program to the PLC
• Switch on the controller
• Connect the data link to the

PC and the controller.

Download the PLC program to
the controller with all the
modules that you have entered
in the symbol file. Do not change
the default settings in the �Load�
window. Confirm your entries
with OK.

Prior to downloading and for
reasons of safety, WinSPS
switches the controller to �Stop�
mode and returns it to �Run�
mode after the download.

The red �Stop� LED on the front
panel of the controller is switched
off when the program is running
on the CL150.

Open the
Monitor to test
the PLC program.

The transferred PLC program is
tested in the Monitor.

WinSPS only starts the Monitor
if
• all PLC program modules are

error−free and downloaded to
the controller and

• if communication is established
to the switched on controller.

Monitor

23

 The Monitor

Program testing Find text Open the Editor
tools

Memory Bosch Anchor,
 configuration cyclical access

 Switch the to the PLC
 program level Configuration

 Reference Select the
 list programming

language

WinSPS offers some
highperformance tools in
the Monitor which allow you
to
• test the program,
• monitor controller and

program states,
• monitor the I/O image,
• retrieve module calls,
• and to switch I/O states.

Especially Operand and Fixing
Files are used to this purpose.

Menu bar �

File selection �

Network �
display

Input box �

Symbol �
window

Status bar �

24

Program module Monitor
View of the
running PLC program

You can shift the separating
line between the program and
monitor display per mouse.

In the IL view, the current
system status is displayed for
each program instruction.
You can customize the display
of register values and the
representation of variables via
the menu �View −> Format ...�.

FBD view of a network in the
Monitor. The displayed network
is cycled. The logical AND link
is set. Marker M0.1 is set after a
10 s interval has expired.

Data Module Monitor
Displays the Data
Module and the
current controller
values.

Data Modules allow you to
access and modify controller
data, provided it is stored in
the controller RAM area. Data
Modules in the (E)EPROM area
are read−only

The left−hand side displays the
content of the Data Module,

the right−hand side the current
controller data.

Prog.

program1.pxo

3

AN I0.3
AN O0.4
A M0.0
= O0.3

I 0
O 0
M 0
 0 a

Network no.

Input bit
Logic link bit VKE
Output bit
Interrupt

Register
Zero
Negativ

Carry
Overflow

e 1a C O N Z I A=
 I

I

Network no.: 3 Interval between a red/green transition of the crossove

M0.0
M1.0

T1

T#10s

M0.1

Data
Text Operand D-Field Force Find Info Diagram List EditorProg. Data

dat_bau.pxd

25

Operand field Editor
You can display
any operand
on�screen and edit,
mark or control it.

On the same screen you
can simultaneously display
miscellaneous operands which
cannot be displayed this way
in the IL Monitor.

When working with large PLC
projects, the operand field editor
offers a view of all important
operand states.

You can edit these operand
values and transfer them to
the controller.

Editing the
operand field
and declaring
new values.

Display of
operand values
with cyclical
update.

Entries marked �Fixed� are
the ones you have modified in
�Fixing Editor�, the Monitor tool.

Marking
operands with
changed
initialization
values.

Modified operands must
be marked before they are
transferred to the controller.

Marked
operands are
transferred to
the controller
with their new
initialization
values.

Data Field Editor
The Data Field Editor
displays entries in the
retentive data field of
8192 bytes length.

You can edit, mark and then
transfer your entries to the
controller.

The button functions correspond
with those of the operand field
editors.

Data field entries must be
inserted in ascending address
order.

Text Operand D-Field Force Find Info Diagram List EditorProg. Data

dat_bau.pxd DisplayEdit Flag Control
Operand

Edit

Display

Flag

Control

D�Feld

Displaydfeld.dxd Edit Flag Control

Text Operand D-Field Force Find Info Diagram List EditorProg. Data

26

The individual program
modules and the complete PLC
program are tested prior their
execution. This is carried out by
connecting the inputs to the
PLC via a simulation field with
diverse switches, or by
simulating the connection

Fixing

You can fix inputs, outputs and markers.

Fixing overrides externally switched I/O states.

Fixed inputs are not displayed on the LED bar of the module,
outputs, however, are shown.simulating the connection

using the Fixing Editor, the
Monitor tool.

outputs, however, are shown.

Fixing is cancelled if you load a fixing without entries.

Data input in the fixing editor is:

 Operand Data typ Fixing a value ; Comment
 I0.3 BOOL 1 ; set I0.3 to ”1”
 I USINT 2#xxxxxx1x ; fix I0.1

Testing the
controller program

The �Traffic light� example is
tested with the fixing tool.

WinSPS opens the
fixing file �force.txd�
when it starts the
Fixing Editor.

Two additional buttons are
displayed above the working
area:

Load the fixing
configuration to
the PLC.

Unload all
fixed I/O
signals to the
Fixing Editor.

The CL150 reactions can be
monitored via the output LEDs.

The program monitor displays
detailed information on all
program states.

You can open a second WinSPS
window to simultaneously fix
inputs and monitor program
changes.

Do not close the first WinSPS
window and open WinSPS once
again via Windows Start menu.
Open the monitor directly in
the configuration of the second
WinSPS window. Open all files
in read−only mode.

Both WinSPS programs run
parallel and update data using
the same data link. Therefore
you can monitor program
reactions parallel to the Fixing
Monitor.

Accelerate the load rate after
minor program modifications.

Transfer the opened
file from the editor to
the PLC. Open the
Monitor view.

 Force

Unload

Load

I0 USINT 2#x0000000 ; reset I0.0 to I0.6

Inputs I0.0 to I0.6 are modified
in the PLC program; I0.7 is
not used.

All bits which are not fixed can
be masked with an �x� rather
than �0� or �1�.

Correct the errors

Debugging programming errors

Editor Lo�>Mo

Lo�>Mo

27

Documentation is an essential
part of programming work. The
programmer will only be able to
systematically debug errors or
continue to edit a program if the
program is well documented.

WinSPS offers a series of
functions and a Help for PLC
program documentation, ranging
from the creation of the new
module to printing out the
finished PLC program.

The programmer takes care
of the major part of the
documentation while he is
programming. This includes:

• structuring the PLC program,
• commenting the program

steps, networks and modules
in IL,

• using symbolic programming.

WinSPS joins the comments in
the PLC programs to form a
complete documentation.

Commenting the FBD program

Program commenting is only
possible in IL.

FBD only displays the comments
above the network layer.

When a network is generated
from IL to FBD, there must be
no comment lines inserted
between IL instructions.

Documenting the PLC program

The print function allows you to

• output program modules in IL,
LD, SFC and FBD with and
without comment texts,

• display programs with
symbolic or absolute operands,

• output cross−reference lists,
symbol files, network and
module overviews.

Print jobs can be output to a file
in order to make them available
for further use in a text editor.

The stack processing function
simplifies documentation tasks
for large projects. The print
objects are displayed in a
window and released for
printing in one pass.

You can customize the content
of a standard print header and
the print layout via diverse
settings in the editor menu �File
print layout...�.

28

Bracket instructions

(
O(
)
)N

AND bracket open
OR bracket open
Close bracket
Negation of the bracket content

Binary links

I, O, M,
T, C, R, P
Status bits

d, i, P

O, M, R, P

A

Bit

Bit d, i, P

AN
O
ON

S
R
=

AND
AND NOT
OR
OR NOT

Set
Reset
Equal

Counter instructions

SCY d, P

CU
CD
RCY

d, P

R, C, P

C, P

Set counter

Counter up
Counter down
Reset counter

Data transfer instructions

Load L D, W,
B

d, i, P I, O, M, T,
C, K, R, II,
EI, D, DF,
P, S

T W, B d, i, P O, M, IO,
EO

Transfer

Compare commands

CPLA W, B K, RdCompare

The

World

Digital links

d, i, P K, R

A

W, B

AN
O
ON
XO
XON

AND
AND NOT
OR
OR NOT
EXCL. OR
EXCL. OR NOT

Time commands
SP
SPE
SR

SRE
SF

RT
TH

d, P

d, P

R, T, P

T, P

Pulse
extended Pulse
On�delay
Rise�time
On�delay
Off�delay

Reset time
Timer Stop

29

Arithmetic operations

Addition

Subtraction with carry
Subtraction

MultipliCation
Division

Increment
Decrement

ADD

SBB
MUL
DIV

INC
DEC

W, B

Addition with carry ADC
SUB

W, B

d

d

K, R

R

Rotate and shift instructions

Rotate right
Rotate left
Rotate right with CARRY
Rotate left with CARRY
Logical SHIFT right
Logical SHIFT left
Arithmetic SHIFT right

ROR
ROL
RCR
RCL
SLR
SLL
SAR

W, B; d R

Conversion instructions

Binary Decimal
Decimal Binary
Two�s complement
Negation

Byte exchange

BID
DEB
TC
N

SWAP

W, B

W

d

d

R

R

Null operations, carry manipulations

NOP0
NOP1
SCY
RCY

Null operations �0�
Null operations �1�
CARRY�BIT �1�
CARRY�BIT �0�

Interrupt commands

Enable Interrupt
Disable Interrupt
Reset Interrupt

EAI
DAI
RAI

d K

Program stop/end

HLT
EP

Hold command
Program end

End of block instructions

EM

EMC

absolute
conditional
with VKE=1

Calling blocks

CM

CMC

absolute
conditional
with VKE=1

Jump instructions

JP
JPx

absolute
conditional

Bit
B
W

d
i
P

direct
indirect
Parameter

D

Bit
Byte
Word
Double word

O

D
DF
I

IO
Output

EO Extended Output
Data word
Data field
Input

Interface Output
EI Extended Input

II
K
M

P
R

Interface Input
Constant
Marker

Parameter
Register

S
T
C

System area
Timer
Counter

Data types Adressing Operands

of CL150

Commands

30

Logic & more
Binary instructions are the basic
elements for logical links.
A binary command consists of
the operation and the operand.

Binary Operations

Logical AND
A Query for signal �1�
AN Query for signal �0�

Logical OR
O Query for signal �1�
ON Query for signal �0�

Assignment statements
= Assign logical

link result
S Output, marker...

set signal to �1�
R Output, marker...

reset signal to �0�

Logical links
You can program logical links
in IL, FBD and LD. For FBD
and LD presentation you must
work in networks.

; Comment (* Comment *)
Comments begin with a semicolon; or they are enclosed with
(* and *).

Comments can only be edited in IL.

A network for binary links
consists of a logical AND/OR
sequence. It starts with an AND
instruction or with an open
bracket �(� and ends with the
assignment of the logical link
result (RES).

In FBD and LD, WinSPS
displays each network
individually. In IL you can
also work with a list view of
all networks and completely
without network technology.

IL

A I0.1 ;AND I0.1
AN I0.2 ;AND NOT I0.2
O M1.2 ;OR M1.2
= O1.3 ;RSE in O1.3

FBD

>=1

M1.2 O1.3

&I0.1

I0.2

O1.3I0.2I0.1

M1.2

LD

Operation Operand <; Comment>

A I0.1 ; Logic AND with I0.1
S O1.2 ; Set Output O1.2
= M1.2 ; Pass RES in marker

Operands

ID, input here
| Byte address
| | Bit ID, I/O
| | |
I 0 . 2
C 3
| |
| Counter ID
ID, counter here

Operands and valid address
area

Inputs I0.0 to I23.7

Outputs O0.0 to O15.7

Markers M0.0 to M191.7

Timers T0 to T127

Counters C0 to C63

31

(Bracket functions)
Links are evaluated strictly in
accordance with the rules of
Boolean logic, that is, �AND
has priority over OR logic
operations�. You can use the
bracket functions and markers to
change the evaluation sequence.

(AND bracket open
O(OR bracket open
) Close bracket
)N Negation of the

bracket content

Bracket function can be nested in
seven levels.

A network with bracket function
can also be represented with
markers.

AND has priority to OR

; Network 1
AN I0.0
A I0.1
O I1.2
A I1.3
= O0.1

I0.0
&

&
>=1

I0.1

I1.2

I1.3 O0.1

O0.1I0.1I0.0

I1.3I1.2

Brackets
; Network 2
AN I0.0
(
A I0.1
O I1.2
)
A I1.3
= O0.1

I0.0
&

>=1
I0.1

I1.2

I1.3 O0.1

O0.1I0.1 I1.3I0.0

I1.2

Absolute or symbolic
WinSPS operates with absolute
and symbolic operands.
Absolute operands are called
via their address, for example,
I0.0.
Symbolic operands are addressed
with their symbolic name. The
name should describe the
operand’s function to make the
program more comprehensive
and easier to read.

� Symbolic name
Declaration in the symbol file

Writing method �− Symbol name�

Case sensitive

Not allowed are mutated vowels and special characters

The symbolic name of the module corresponds with its name in
the module file.

Length of symbolic names
� for modules maximum 8 characters
� for other operands 32 characters

Operand Task absolute symbolic

I0.1 Input I0.1 reports slide at the front AN I0.1 AN -Slide_is_Forward

O0.3 Starts the conveyor belt = O0.3 = -Belt_On

DM0 Module file �crane_dat.pxd� with data for the
project �CRANE�

CM DB0 CM -CRANE_DAT

C3
D4

Parts counter
Maximum buffer capacity

L W Z3,A
L W D4,B

L W -Number_of_Parts,A
L W -Max_Number_of_Parts,B

32

Counters
The CL150 offers 64 counters
and 128 timers. They can be
started via program controls
and without additional hard−
a e

Generating timers and counters in FBD

WinSPS automatically generates FBD modules for counters
and timers When you subsequently switch to IL the result is aware.

You can program counters and
timers in IL, FBD and LD.

and timers. When you subsequently switch to IL, the result is a
determined instruction sequence for the IL view.

If you toggle between IL and FBD you must not modify the
instruction sequence determined in IL via FBD.

Programming counters

Counter operands are C0 to
C63.

Count starts at the rising edge
of RES.

The count starts at 0 or at the
declared start value.

Valid count area and start
values are 0 to 8191.

Counter commands

SCY Declare the counter start value
CU Increment
CD Decrement
RCY Reset counter to 0

The counter status is queried using the load command "L".

CU/CD:Count condition
PV: Start value
LD: Load condition for

start value
R: Reset condition
CV: actual counter value
Q: Counter = 0: RES = 0

Counter > 0: RES = 1

CU/CD and Q must be
wired.

CU

C0

CU

PV

LD

R

CV

Q

CD

C0

CD

PV

LD

R

CV

Q

Up�counter Down�counter

Up−counter CU

 ; Count
A I0.4 ; If I0.4 toggles 0 -> 1
CU C1 ; increment C1 by 1
 ; Set counter to 1
A M0.5 ; If M0.5 is set
L W 1,A ; load counter status 1
SCY A, C1 ; Set counter
L W C1, A ; Load counter value
 ; Reset counter
A I0.0 ; If I0.0 toggles 0 -> 1
RCY C1 ; reset counter
 ; Save counter value
L W C1, A ; Load counter value
T A, M4 ; Save counter value
 ; Query counter value 0
L W C1, A ; Load counter value
A C1 ; As long as counter is
 not 0,
= M1.0 ; Merker M1.0 setzen

CU

C1

=

PV

LD

R

I0.4

I0.0

CV M4

M1.0Q

I0.4

I0.0

M0.5

C1

0

1 1

2

3

4

CU

33

Times

Programming times

Times start at the pulse edge of
RES
• SP, SPE, SR and SRE at the

positive edge
• SF at the negative edge
Transitions within the 1st cycle
after a program start are
ignored. The time period is
declared in the time constant.
Times are actualized in the I/O
cycle. During a program cycle
the time end is therefore not
recognized until the next cycle.

Time commands

SP Pulse time start
SPE Start Pulse Extended
SR Start Rising Edge Delay
SRE Time start as rise−time On−Delay
SF Start Falling Edge delay

RT Reset time with RES=1

TH Time Hold with RES = 1

The current time is queried using the load command "L".

Time constant: T#10ms to T#10230s

IN: Start condition
PT: Time constant
ST: Hold condition for

time
R: Reset condition
ET: Extra time
Q: Time status

IN, PT and Q must be
wired.

IN

T0

SF

ST

R

ET

Q

PT

Time diagrams

SP Start Pulse Time

SPE Start Pulse
Extended

SR Start On−Delay

SF Time start as
Off−delay

SRE Time start as
Rise−time
On−delay

Start condition

Reset condition

Time status

Start condition

Reset condition

Time status

Start condition

Reset condition

Time status

Start condition

Reset condition

Time status

Start condition

Reset condition

Time status

34

Time start as pulse SP

A I0.2 ; I0.2 from 0->1
L W T#2s,A ; Load time
SP A,T2 ; Start time T2

A M0.0 ; M0.0 from 0->1
TH T2 ; Hold time counter

L W T2,A ; Load time value
T W A,DF4 ; Transfer to DF4

L W T2, A ; Load time value
A T2 ; Time running?
= O2.1 ; Set output

Start Time as On−delay SR

A I0.6 ; I0.6 briefly from 0->1
L W T#5s,A ; Delay 5 sec
SRE A,T1 ; On delay

A I1.0 ; I1.0 from 0 -> 1
RT T1 ; Time off

L W T1,A ; Load timer value
A T1 ; Time running T1= 0
= M0.3 ; Time expired:
 ; T1= M0.3 =1

IN

T2

SP

=

PT

ST

R

I0.2

M0.0

T#2s

ET DF4

O2.1Q

IN

T1

SRE

=

PT

ST

R

I0.6

I1.0

T#5s

ET

M0.3Q

I0.2

M0.0

T2

I0.6

I1.0

M0.3

35

Calculations
The CL150 offers digital linking,
arithmetic function and compare
instructions for calculations and
comparison. Input data are
passed as constants or register
values. After command
execution, the result appears in
the register of the 2nd operand.

The status bits display supplemen−
tary information regarding the
result, for example, the prefix
operator or calculation errors.
Z Zero, the result is zero
N Negation, negative result
C Carry, carry bit
O Overflow, range overflow,

division by 0 or result value
exceeds 16 bits.

Registers are used as
intermediate memory for data
exchange. The CL150 operates
with the four 16−bit registers A,
B, C and D.

Calculating operations cannot
be displayed graphically. They
can only be programmed in IL.

The addressing instructions "L"
and "T" are used to exchange the
values, for example, of a counter
or data field, between the
registers and an operand of the
CL150.

The load operation "L" loads the
register with a constant or with
the value of an address area.
The transfer operation "T" returns
the contents of the register to an
address area.

Calculate 25 � 10 =15

A

B

25

10

Calculate
SUB B, A

25−10
; 15 �> A

L W 25, A
 L W 10, B

T W A, DF0

 "Load"

A DF0

Return value �transfer"

C

D

Compare=?
The CPLA instruction can be
used for logical and arithmetic
comparison. It can be
programmed in IL or FBD.
The compare result is evaluated
via status bits.

Counter setpoint 30 reached?

>=

O0.2=

30

C1

IN1

IN2

L W C1,A ; Counter value
L W 30,B ; Setpoint 30
CPLA W B,A ; Compare
AN CY ; A >= B?
= O0.2 ; RES –> O0.2

Q

Evaluation of the logical
comparison
CPLA W B, A Query

A + B A Z

A 0 B AN Z

A t B A CY

A v B A Z
O CY

A u B AN CY
AN Z

A w B AN CY

IL instructions in FBD

When programming in FBD, a separate network must be created
for every instruction sequence that cannot be displayed in FBD.
WinSPS automatically toggles the display mode from FBD to IL
if a network cannot be displayed in FBD.

Operation

Digital linking A, AN,
O, ON,
XO, XON

Arithmetic ADD, ADC,
operations SUB, SBB,

MUL, DIV

Compare function CPLA

1st Operand 2nd Operand

Constant Register
registers

Constant Register
registers

Constant Register
registers

AN B A,B

ADD W 14,A

| | 2nd operand, register

| 1st operand, constant or register

Byte� length or Word length

36

Calculation with Byte or Word operands
Byte operands can occupy any
operand address, I3, M91, O5.
Word operands must occupy
even−numbered address areas
only, O14, M0, I6.

With add and subtract operations,
the input and result operands
occupy the same register length.

The results of multiplication
instructions and the division
operation for the first operand
require double register length.

Multiplication with Byte and Word operands

A

B
C

10

20

MUL B B,A ; 200 −> A

L B 10, A
 L B 20, B

T B A, M0

10 * 20 = 200

A M0

M0 = 200

A
B
C

200

350

MUL W B,A ; 70000 −> BA

L W 200, A
 L W 350, B

T W A, M0

BA = B x 216 + A

T W B, M2

200 * 350 = 70000

A
B

M0

M2

M0 = 4464, M2=1

Division with Byte and Word operands

A
B

112

10

DIV B B,A ; 2 −> Al, 11 −> Ar

L W 112, A
 L B 10, B

112/10 = 11 Rest 2

T W A, M0 A M0

M0 = 2 x 28 + 11 = 523

Al: Register A left byte = remainder
Ar: Register A right byte = result

A
B

C

905

0

DIV W C,A ; 90 −> A, 5 −> B

L W 905, A

L W 0, B
 10L W 10, C

T W A, M0

T W B, M2

905/10 = 90 Rest 5

A
B

M0

M2

M0 = 90, M2 = 5

37

Indirect addressing of operands

With indirect addressing the
operand name and address are
declared separately. The operand
address is first loaded via register.

Bit operands such as I6.2 are
addressed via Byte address and
Bit number.

Indirect addressing is used, for
example, to copy inputs to a
marker area using only few
commands. The Words of
inputs I10 to I20 are copied to
the marker words M50 to M60.

The "JPx continue" command
means: jump to program address,
"continue" if the previous value
is not negative. The operations
INC and DEC add/subtract the
value of the 2nd operand
to/from the 1st operand.

L W 5,A ; Loop counter 5
L W 10,B ; Start address for inputs: 10
L W 50,C ; Start address for markers: 50
 continue: ; Destination address for loop
L W E[B],D ; Read input value
T W D,M[C] ; Write to marker area
INC W C,2 ; Next marker address
INC W B,2 ; Next input address
DEC W A,1 ; Loop counter -1
JPN continue ; Loop counter >=0? => continue

Addressing M2 directly

L W M2, B

Addressing M2 indirectly

L W 2,A
L W M[A],B

L W 50,A ; 50:8=6, Rest 2
A E[A] ; Input I6.2

38

Constants, variables and address areas

Constants

Meaning Representation Area
Unsigned integer Binary

Decimal
Hexadecimal

2#0000��0000��0000��0000 to 2#1111��1111��1111��1111
0 to 65535
16#0000 to 16#FFFF

Signed integer Decimal −32768 to +32767

Text ASCII ‘ABC’

Time value

T#10ms to T#10230s

alternative input:
T#0.r to T#1023.r,
r: 0=1ms, 1=100ms, 2=1s, 3=10s

Variable types

Meaning Prefix Data typs Data length Examples
Bit X BOOL �1 bit TRUE, 0
Byte B BYTE, SINT, USINT �8 bit 232, �126, 2#00001111
Word W WORD, INT, USINT 16 bit 12670, �2504, 8#376376
Douple word D DWORD, DINT, UDINT 32 bit 78900,���123000, 16#FEF4FEF5
Counters CVALUE 16 bit 3
Timers TVALUE 16 bit T#10s
Strings STRING(x), OSTRING(x),

VSTRING(x)
variable with
length x

’CHARACTER’, 09, 3F, 0D,21, 3F, 7E

Address area of the load and transfer instruction
Load instruction �L� Transfer instruction �T�
L W 1st Operand, register T W Register, 2nd operand

1. Operand Address area 2. Operand Address area

Input,
Interface input

I0 to I47
II0 to II1

Output,
Interface Outp.

O0 to O31
IO0.0 to IO0.7

Output O0 to O31 Marker M0 to M151

Marker M0 to M151 System area S0 to S255

Timers,
Time value

T0 to T127
10�ms to10230�s

Parameter P0 to P31

Counters,
Counter value

C0 to C63
0 to 8191

Data Field DF0 to DF8191

Constant 0 to 65535 Bytes in Data
Module

D0 to D511

Register A, B, C, D

Parameter P0 to P31

System S0 to S255

Data Field DF0 to DF8191

Bytes in Data
Module

D0 to D511

39

Modules and files of the PLC program

The controlling and structuring
of PLC programs, as well as a
well arranged design of large

controlling projects is assisted by
the use of organization/program/
data modules.

Organization Modules
OM1 to OM19 represent the
interface between the program
and the controller.
Organization Modules
• start the PLC program

cyclically,
• initialize the system area of

the CL150,
• offer a variable program start;
• process error and interrupt

handlers and they
• are closed with a "EP"

instruction.

Program modules
FC0 to FC127 contain the major
parts of the PLC program. FC
represents a Function Call.
Program modules
• can call data modules and

other FCs,
• contain mainly interrelated

functions of program parts,
• can be called with I/O

parameters,
• are closed with a "EP"

instruction.

Data modules
DM0 to DM127 store the fixed
and variable values of as well as
the text information in the PLC
program. Two DMs can be active
concurrently in a program block.
Data modules
• are called by FCs or OMs,
• contain between 1 and 512

bytes of data per DM,
• must be activated prior to

using them,
• are only active in the calling

FC or OM,
• stay active in the FC or OM

until other data modules are
called.

Data field
The CL150 manages a data
field with a size of 8 KB:
DF0−DF8191; can be used as
read/write buffer for any data.
The data field can be battery
buffered against power failure.

40

The CL150 Organization Modules

Cyclical block

The system cyclically calls the
Organization Module OM1.
The I/O image of the CL150 is
updated prior to each call. OM1
is used mainly for program
controlling. It starts the lower
program module level.
OM1 must be implemented once
in every PLC program.

All other Organization Modules
are optional.

Definition module

In OM2 you can edit system
configurations of the CL150 such
as, for example, the maximum
cycle time, time and timer
behavior or remanence limits.
At the first start of the PLC
program, OM2 writes the
Initialization to the CL150
system memory.

Configuration Table

The configuration program
WinSPS creates an OM3 when
I/O modules of the B~IO system
are manually configured.

Startup Module

The OM5 program is processed
after the CL150 is switched on
and at the start of the PLC
program.

Startup Module

Contrary to OM5, the OM7
program is executed only on
transitions from Stop to Run
mode.

Error Module

In case of control program error
the OM9 program is executed
before the controller changes to
Stop mode. This action, for
example, recovers important data
from remanent marker areas.

Interrupt Module

Programmed Interrupt Modules
are called by the system program
if the signal changes on specified
interrupt inputs.

Time controlled modules

Time controlled modules are
called when a specified time
interval has expired and a
running program block is
terminated.
Time intervals can be edited in
the PLC program.

41

 Program cycle

Program structure

Start sequence and program
cycle with Organization
Module calls.

42

Programming with
WinSPS

Using the CL150 to control
crossover lights
In basic state the crossover lights
should display red. The signal
should toggle to green
10 seconds after a pedestrian
who wishes to cross the road has
actuated the request button. The
pedestrian has 15 seconds to
cross the road; after that time
the signal toggles to red again.

In the following chapter we will
develop a control program that
meets these demands. You can
find helpful information on
handling WinSPS in the Chapter
"The Program WinSPS".

CL�150
Basic equipment:
CL150 with 8 digital inputs
and 8 digital outputs

43

Programming the crossover light controls

Default configuration
Open WinSPS and customize
your default settings.

You can choose the names freely.
However, it is important that you
subsequently enter the correct
names in the symbol file.

After having completed your
default customization, call the
editor.

44

Call the editor
Customizing the symbol file

Open the symbol
file and enter
the following:

Declare all other operands
below. You can freely choose
the sequence.

You should initially plan your
I/O and marker assignments
and enter them in the symbol
file. You can modify them at
any time.

An alert in the editor’s status
bar will warn you if you are
using programming elements
that you have not yet entered
in the symbol file. This alert is
cleared after you have updated
the symbol file.

Programming the
Organization Module OM1
The Organization Module OM1
is displayed by default when you
open the editor.
If this is not the case, select the
file "Org_Mod.pxo" in the file
selection window.

Call the program module FC0
with the help of OM1. Insert the
CM row for the module call
above the EM row.

Save the file.

Symbol

In the row

 OM1,R ORG_BAU (Name of your Program Module)

In the row

 FCO,R PROGRAM1 (Here you can name your
 second Program Module)

In the row

 DMO,R DAT_BAU (Name of your Data Module)

I0.0 Request_button

O0.0 Crossover_lights_red
O0.1 Crossover_lights_green

M0.0 Request_Marker
M0.1 Time_Marker_1_Crossover_red_green
M0.2 Time_Marker_2_Crossover_green_red

M1.0 Step_marker_1
M2.0 Step_marker_2

T1 Time_red_green
T2 Time_green_red

CM FC0 ; Creating the program module FC0

45

Creating the
program module FC0

Create this program module and
name it "program1.pxo".

Switch to the FBD view and
enter the program networks.

1 Set crossover signal to red

2 Evaluate the request button

3 Time delay Red −> Green

4 Switch crossover signal to green

5 Time delay Green −> Red

6 Switch crossover signal to red

7 Module end

46

The Program Module
"program1.pxo"

Network 1, Set crossover signal to red

Network 2, Evaluate the request button

Network 3, Time delay Red −> Green

Network 4, Switch crossover signal to green

47

EMEM

Download the program to the
controller
Switch on the controller. Ensure
that the operation switch of the
CL150 is in "Run" position.
To transfer the program to the
controller, select "Load" in the
menu "Controller". Do not make
any changes in the "Load"
window. Confirm your entries
with OK.

The program is compiled during
this loading process. You will be
warned of any errors in the
program syntax.

Network 5, Time delay Green −> Red

Network 6, Switch crossover signal to red

Network 7, Module end

48

Open the Monitor view
After you have successfully
transferred your program to the
controller, output O0.0 should
light up after you have switched
the controller to RUN mode.
This output represents the red
signal of the crossover lights.

Now call the
Monitor.

The rotating Bosch Anchor in the
upper right of the Monitor dialog
box indicates that the controller
is running.

Testing the control program
You have two program testing
options:
Simulate the request key by
connecting a switch to input
O0.0 of the controller or via
Fixing function.

You only need to actuate this
corresponding switch to monitor
the program reaction in the
Monitor view.

Call Fixing.

To restart the cycle, you must set
and reset input O0.0. If O0.0
stays set the process enters a
kind of endless loop.

Fixing

Step Simulation of Inputs Fixing Outputs Explanation
on off "Load" on off

0 Traffic signal red o0.0 Red light is lit
at program start

1 Actuate the I0.0
request button I0.0 BOOL 1 O0.0 Request button is

actuated

2 Release the i0.0
request button I0.0 BOOL 0 O0.0 Request button is

released

The additional program steps
proceed without user intervention.

Monitor

 Force

49

Programming the counter
In a second step the existing
program will be extended:

The counter is to determine how
often the request button has been
actuated within the 10 seconds
until the crossover light toggles
to green signal. If a crossover
light change has been requested
five times or more, the green
phase will subsequently be
extended from 15 seconds to
30 seconds.

Open the Explorer. In your
program path (C:\BOSCH\
Tr−lights, if you have adhered
to the default specified above),
create a new subdirectory
"STEP2" at the same level as
"STEP1". Then, copy the
STEP1 subdirectories to the
new directory. The first program
section is now available for
editing your expansion in
STEP2.

Click on Project Name in the
WinSPS default configuration.
The box below should now
display the STEP1 and STEP2
fields. Click on STEP2 and open
the editor.

First again, customize the symbol
file.

You do not need to edit the
Organization Module OM1.

I0.0 Request_button

O0.0 Crossover_lights_red
O0.1 Crossover_lights_green

M0.0 Request_marker
M0.1 Time_Marker_1_Crossover_red_green
M0.2 Time_Marker_2_Crossover_green_red

M0.3 Counter_Marker
M0.4 Time_meas_2_cross_green_red_Counter_0
M0.5 Marker_to_set_Counter
M0.6 Marker_for_T2
M0.7 Marker_for_T3

M1.0 Step_marker_1
M2.0 Step_marker_2

T1 Time_red_green
T2 Time_green_red
T3 Time_green_red_Counter_not_0

C1 Request_Counter

50

New Network
Now, open the program module
FC0 you have named
"program1.pxo" and enter your
changes.

Here, you must recreate the
networks displayed in black
color, or modify them if they
already exist. The new program
parts to be changed are high−
lighted in the source code below.

1 Set crossover signal to red

2 Evaluate the request button

3 Time delay Red −> Green

4 Set counter and decrement

5 Switch crossover signal to green

6 Time delay Green −> Red

7 Determine the T2 Marker

8 Time delay Red −> Green, if counter = 0

9 Determine the T3 Marker

10 Switch crossover signal to red

11 Module end

T

51

Network 1, Set crossover signal to red

Network 2, Evaluate the request button

Network 3, Time delay Red −> Green

Network 4, Set counter and decrement

52

Network 5, Switch crossover signal to green

Network 6, Time delay Green −> Red

Network 7, Determine the T2 Marker

Network 8, Time delay Red −> Green, if counter = 0

53

EMEM

Network 9, Determine the T3 Marker

Network 10, Switch crossover signal to red

Network 11, Module end

54

Loading, testing and modifying
the program
Download the program to the
controller with "Controller −>
load". Now open the Monitor
and test the program by setting
and enabling I0.0 six times.
However, repeat this sequence
only once or twice.

You should now make a few
changes in the program in
order to familiarize yourself
with WinSPS and the CL150.

Open the Editor again.

Edit

Slightly modify the program and
reload it to the controller.

You can, for example, extend or
reduce times; or, you can add
comments to disable markers
that, on first sight, appear to you
to be superfluous. The program
process will then be different −
monitor the reactions in the
Monitor and find out why the
program reacts this way.

In short, feel free to play around
with the program. Maybe you
will come up with a solution you
like better than the existing one!

55

Structured
programing
Structured programming is used
to split the program into clearly
organized, functionally and
technologically interrelated
modules for your PLC
configuration.

Each one of the modules carries
out a partial operation in the
PLC configuration.

The advantages of structured
programming are:

• a clearly organized program
structure,

• programming and testing of
subroutines,

• testing and editing of PLC jobs
by the project team members

• multiple use of program
modules

• simplified troubleshooting
• clear readability
• shorter programs

Organization Modules and
Program Modules are available
to realize structured program−
ming.

Organization Modules (OMs) are
called directly by the CL150
operating system. Therefore, they
are mainly used for jobs closely
related to the system.

The tasks of Organization
Modules include error/interrupt
handling, initialization of the
CL150 and cyclic processing of
the PLC program.

The PLC program is edited in
the program modules.

Each one of the program
modules should describe a
functionally interrelated task.
It can call up further program
modules to process part of this
task.

Program modules can be
configured. When the module
is called, the data required by it
is passed as parameter value.

With the documented parameter
values acting as interface, the
modules can be encapsulated and
inserted in the module library.

Module call with parameters

Input parameters are passed to the program module when it is called.
The subordinate module returns the results in output parameters.

WinSPS manages

Input parameters VAR_INPUT
Output parameters VAR_OUTPUT
I/O parameters VAR_IN_OUT

The number of parameters is returned when the module is called.

;Module call ;Module FC1

CM FC1,2 A I0.0
P0 M1.1 AN P0
P1 W M20 = O0.2

L W P1,A
INC W A,1
T W A,P1

56

Structuring the
control program

The network of a sample
program shows you how to
configure and call a module.
The crossover light function is
not changed in this process.

We shall use Network no. 3
"Time delay red −> green".
The master program calls and
transfers the timer function and
the parameters to a separate
program module.

Customizing the
symbol file
In the symbol file, you must
specify the new program module
you are using for this
configuration.
The new module will be called
"timer1.pxo".
Enter the following row below
the row calling the module
"program1.pxo"

Save the symbol file.

Configuring a module
First, we shall create the program
module "timer.pxo".

timer1.pxo

This program module is to be
called with three parameters.
First, create the new module and
then customize your parameter
data.

You can edit the parameters in a
separate window of the WinSPS
Editor under �Edit −> Edit
Parameter List...".

Input data for the parameter
header:

The new program module
�timer1.pxo" consists of two
networks

1 Timer for red−green
delay

2 Module end

Copy network 3 from the
module "program1.pxo" to the
new module and replace

M0.0 with P0
M1.0 with P1 and
M0.1 with P2.

Save the completed module
"timer1.pxo".

The new program module "timer1.pxo"

EMEM

FC1,R TIMER1

P0 Bool Step_Marker_1

VAR_INPUTP

P1 Bool Request Marker

VAR_INPUTP

P2 Bool Time_Marker_1

VAR_OUTPUT

Network 1, Timer for red > green delay

Network 2, Module end

57

Customizing the
program module
"program1.pxo"

Now the first program module
"program1.pxo" remains to be
customized:

Delete the contents of Network 3
without deleting the network
itself.

Subsequently, insert the
parameter list by selecting
"Edit −> Call parameter list".

WinSPS queries the parameter
list in module "timer1.pxo" and
inserts it with its symbolic
operands.

Replace these symbolic operands
with the absolute parameters
M0.0, M1.0 and M0.1.

EMEM

Network 1, Set crossover signal to red

Network 2, Evaluate the request button

Network 3, time delay red > green via module call

Network 4, Set counter and decrement

Network 5 to Network 11, Module end

58

Memory structure
The CL150 is equipped with
RAM and Flash EPROM
memory modules.

The RAM area is a volatile read−
write memory that must be
battery buffered to protect
against power failure, thus
protecting against the loss of
the PLC program and remanent
data.

EPROM memory is non−volatile,
which means that program and
data modules loaded to the
EPROM are still available after
a power failure. However, the
actual data of remanent areas
and of the data field are lost if
no buffer battery is installed.

CL150 operating modes
The CL150 operates in two
modes: with and without battery.
In battery mode, all memory
data and the setting of the
real−time clock are retained
when the power supply is
switched off. After the power
supply is switched on again the
controller picks up operation
with the values contained in the
memory before power was
switched off.

With operation without battery,
the RAM and data memory
restart in an undefined state after
power is switched on again. The
real−time clock is set to 01.01.00 /
00:00, the weekday is not
defined. All modules contain
their initialization values. User
data are deleted.

You declare the operating mode
of the CL150 in the Initialization
Flag DW02 bit 7, of the
Initialization Module OM2:

DW0, bit 7=0 no battery
DW0, bit 7=1 battery mode

Delivery state of the CL150:
no battery mode.

Remanent behavior
The CL150 provides a remanent
memory area for storing operand
values. The memory is battery
buffered and protects data in case
of power failure and operating
mode transitions Run/Stop and
Network On. This remanence
area can be modified in OM2.

Without changes in OM2, the
remanent memory area contains:

Marker M76 to M152
Counter C32 to C63
Times T64 to T127

The complete Data Field, Data
Modules and Monitor Fixings
also stay remanent.

59

CL150 startup modes
The CL150 can load new
programs from EPROM
memory, independent of
a programming device.

After it is switched on, the
CL150 first tries to locate a
valid program in the RAM or
EPROM memory.

If a program exists there
the CL150 loads it into the
RAM.

�

Load program

Inputs

60

In the CL150 controller you can
utilize two fast hardware counters
or, as an alternative, three
interrupt inputs. The controllers
CL150A and CL151A can be
used to process analog values.

CL150 interfaces

Onboard
hardware counters
These are two fast 32−bit
up/down hardware counters.
They can count pulses, regardless
of the PLC I/O cycle. Both
counters can process their own
tasks. You can configure I0.0/
I0.1 and I0.2/I0.3 as fast
counters.
The default setting of both
counters is specified in the
Organization Module OM2.
When using these counters
you must implement this
Organization Module in the
PLC program.

Declared is
• the counter default values,
• an upper and lower setpoint,
• outputs to be set
instantaneously after the
setpoint is reached,

• control data for edge detection
and default count direction.

Inputs

Interrupt inputs
With the help of the three alarm/
interrupt inputs I0.0 to I0.2 the
PLC can react instantaneously,
regardless of program signal
transitions at the input.

An input signal transition from
0 to 1 triggers a peripheral
interrupt in the PLC. This
interrupt stops the current PLC
program process and starts one
of the three Organization
Modules OM10, OM11 or
OM12.

This input function is enabled
if the interrupts are enabled
and if OM10 to OM12 are
implemented in the program.

One Organization Module is
assigned to each interrupt input.
The first input has the highest
priority. This means that the
program in Organization Module
OM10 can not be interrupted by
an interrupt of the second or
third input.

The PLC program continues
at the break point after it has
processed the interrupt request.

Analog data
processing
The CL150A and CL151A are
equipped with two analog inputs
and one analog output. Without
additional modules they can
therefore process measuring data,
for example, for monitoring
temperature, filling levels and
pressure or tasks for controlling
motor controllers or slide valves.

The analog signals are connected
to the X23/X24 interfaces. These
analog inputs operate with a
resolution of 10 bits and in a
voltage range of 0 to 10 V.

At the analog output the signal is
made available on two cables as
voltage value (X12) or current
value (X13). The nominal range
of the voltage signal is 0...10 V
or −10...+10 V, that of the current
signal is 0...20 mA.

The system area of the controller
contains the data for analog data
processing.

61

Technical data of the CL15x, CL15xA
Classification :
Control systems of the lower and
medium performance class
Module rack dimensions (WxHxD)
in mm 123/184 x 105 x 38
without connectors
Weight 350 g / 500 g
24−V voltage supply
Current consumption up to 1.2 A,
inrush current up to 25 A

Editing time
Bit instruction min. 0.6 µs
Word instruction min. 0.6 µs
Module instruction min. 46 µs
I/O image in 0.6 to 1.9 ms
64 KB RAM program memory
and
64 KB Flash EPROM
RAM buffering with lithium battery

12 Organization Modules,
OM1 to OM3, OM5, OM7,
OM9 to OM12, OM17 to OM19
128 Program Modules,
FC0 to FC127
128 Data Modules,
DM0 to DM127
8 kByte Data field,
DF0 to DF8191
256 bytes system area,
S0 to S255
Nesting depth
32 blocks
7 bracket levels
Address format: BIT, BYTE,
WORD, DOUBLEWORD for
constants

384 digital inputs
I0.0 to I47.7
256 digital outputs,
O0.0 to O31.7
1216 Markers,
M0.0 to M151.7
4 registers, Word length
128 timers,
T0 to T127
64 counters,
C0 to C63
2 fast counters,
32 bits, max. 10 kHz
Analog inputs:
CL15xA: 2
Analog outputs
CL15xA: 1

62

Literature

• Bosch CL150, CL151,
CL150A, CL151A
−DP, −CAN, −IBS, −DEV
Controller Manual /
Operation List
Order no. 1070 072 188

Training

The Bosch Training Center
"AT−didactic" offers product
training related to the economic
use and operation of industrial
controlling techniques.

• Programmable Logic
Controllers (PLC)

• Numeric Controls (CNC)

• Robot Controls (RC)

• Electrical Servo−drive systems

• Welding controls

You can order the detailed
training program by calling
Germany +49 (0)�60�62�/�78�6�02
or per
fax +49 (0)�60�62�/�78�8 33

63

Glossary

Absolute Jump The jump is carried out regardless of the previous logic link
result. See also Jump Instruction.

AND circuit Serial logic contact link. The logic result is only 1 if all contacts are on
current, that is, if all contact signals are 1.

ASCII American Standard Code of Information Interchange −
standardized code for character display

Battery RAM Read / Write Memory. Buffered against power failure.

Baud rate Dimension for the speed of data transfer

Binary Numerals, data and information are displayed only with the
characters 0 and 1.

Bit Smallest unit that describes a �0� or �1� status.

Byte 1 Byte = 8 bit

Central unit The PLC core − consists of the controlling unit and the
calculation unit

CPU Central Processing Unit � see Central Unit

Compare function Logical or arithmetic comparison of operands
(BIT, BYTE, WORD etc.)

Conditional jump The jump is only carried out if the previous logic link result is 1. See
also Jump Instruction.

Contact plan, LAD Represents the control sequence with NO and NC contacts as common
in relay technology.

Cross−reference Determines all blocks and program rows for an operand which is
used in the PLC program.

Cycle time Time required for one cycle of the user program

Editor User program which assists the following actions: input,
modification, correction, saving and output of PLC programs.

EPROM Erasable Programmable Read Only Memory. The memory
content is non−volatile. However, it can be erased if required.

Fixing Setting or resetting I/Os with the help of a programming device,
regardless of the respective program dependent I/O status.

Function block language, FBL Function block representing logical networks.

Hardware All devices and accessories of a PLC, for example, the
programming device, controller, printer, cables etc.

Input image Memory for the �0" or �1� status of all PLC inputs

Instruction The smallest self−contained step of a PLC program, for example,
I/O links AND, OR etc.

Instruction List, STL Presentation of a PLC program in which the instructions are
listed in rows one below the other.

Interrupt input Input with the highest priority. When the interrupt input is set,
the normal program cycle is interrupted to process an interrupt
routine.

64

Jump instruction With a jump instruction the user can force the PLC program
to quit at a defined point and perform a jump to continue
program processing at another point of the program. There
is a differentiation between absolute and conditional jump
instructions.

LED Light Emitting Diode − Luminescent diode optically displaying
operating states

Marker Memory for intermediate values with the status Set or Not Set.

Marker area Number of available markers. The CL150 is equipped with a
marker area of 152 markers

Monitor mode Displays internal and external switching states on the
programming device. See also Online.

Normally closed contact (NC) Breaks the current circuit when it opens.

Normally open contact (NO) The current circuit is connected when this contact closes.

Offline The programming device is not connected to the PLC.
PLC programs can be created without the controller.

Online The programming device is connected to the PLC. While the
machine or system which is to be controlled is in operation, the
I/O status and the logic link results can be monitored on the
programming device. See also Monitor mode.

Operands This refers to inputs, outputs, markers, timers and counters.
Addresses are part of the instruction set.

Operation Part of the control instruction set which determines how to
interlink operands, for example, with AND, OR, LOAD,
ADD, COMPARE operations.

Optocoupler Module for the separation of current circuits. The electrical
signals of the primary current circuit are converted into a light
signal. These signals are subsequently converted back into the
original electrical signal in the secondary circuit, thus decoupling
the secondary current circuit from the primary. This increases the
PLC’s immunity to interference.

OR circuit Parallel logic link of two contacts. If one of the contact
signals = �1�, it is under current, the logic result is a 1.

Output, short circuit−proof Output on which the output current is retained within permitted
limits in error case.

Output image Result memory for logic link results that are passed to the outputs
at the end of a PLC program.

Output signal Current/voltage value for controlling series control units, power
contactors, motors or valves.

Peripheral devices All devices which can be connected to a PLC; for example,
printers or text displaying devices

PLC Programmable Logic Controller

Potential separation Distribution of I/O signal lines to multiple current circuits with
multiple reference points.

Program Command set for the solution of certain tasks.

Program address Identifier of program segments

Program memory Semiconductor modules for storing user programs; for example,
EPROM or RAM.

65

Program processing controlled
by interrupt

The interrupt routine OM10, OM11 or OM12 is processed when
the interrupt input is set. This interrupts cyclical PLC program
processing.

RAM Random Access Memory − Memory module for read / write
operations. The memory is volatile in case of power failure if
not battery buffered.

Remanent memory Non−volatile memory. The content is remanent in case of power
failure.

Serial interface Transmits serial data over a single data line

Software Collective term for programs

STL See Instruction List

Transfer protocol Standardized protocol for data communication. The data format
and parameters of the communication are fixed. The aim is high
communication reliability.

66

Index
A
Absolute Addresses, 31
Address areas, 38
Addressing BIT operands, 37
Addressing, 11
Alerts, 19
Analog value processing, 60
Arithmetic functions, 35

B
Basic device, 8, 9
Battery mode, 58
Binary commands, 30
Bracket functions, 31
Buffer battery, 58

C
Checking the data
communication, 15
Comment header, 19
Comments, 27
Compare instruction, 35
Connecting a data link, 15
Connection X31, 15
Constants, 38
Controller variants, 8, 9
Copy key, 59
Counter instructions, 32
Creating a file, 20
Creating a PLC configuration, 16
Creating networks, 20
Cross−reference lists, 27
Customizing communication
parameters, 15

D
Data Field, 39
Data Modules, 39
Data transfer, 15
Disruption of data
communication, 15

E
Editor, 17
EPROM memory, 58
Error abbreviations, 19

F
Fieldbus interface, 8
File structure, 16
Fixing, 48
Flash EPROM memory, 58

H
Hardware counter, 60

I
Indirect addressing, 37
Installation program, 14
Installing WinSPS, 14
Instruction overview, 28, 29
Interface testing, 15
Interfaces, 60
Interrupt input, 60
Interrupt input, 60

L
Licensing WinSPS, 14
Literature, 62
Load instruction "L", 35
Loading the program, 59
Logical link result (VKE), 30
Logical links, 30

M
Memory structure, 58
Module interface, 7
Module library, 55
Module rack, 7
Monitor, 23

N
Network, 30

O
Opening a file, 20
Operand address, 36
Operand field editor, 25
Operand status, 25
Operating modes, 58
Operating without battery, 58
Organization Module OM1, 19
Organization Modules, 39, 55

P
Parameter call, 55
Peripheral interrupt, 60
PLC program in FBS, 20
Preset, 16
Printing, 27
Program Modules, 39, 55
Programming times, 33
Programming, 19
Project directory, 16
Project path, 16

R
RAM memory, 58
Register, 35
Remanence behavior, 58

S
Serial interface, 15
Stack processing, 27
Start address, 11
Startup modes, 59
Status bit, 35
Symbolic names, 31
Symbolic operands, 31
System status, 24

T
Technical data, 61
Testing the program, 26
Time constant, 33
Time diagrams, 33
Time instructions, 33
Training, 62
Transfer instruction "T", 35

U
Uninstalling WinSPS, 14

V
V24 cable K19, 15
Variable types, 38
Voltage supply, 10

W
WinSP overview, 13
WORD operands, 36

Bosch Automation Technology

Industrial hydraulics
Robert Bosch GmbH
Geschäftsbereich
Automationstechnik
Industriehydraulik
Postfach 30 02 40
D-70442 Stuttgart
Fax +49 (0) 7 11 8 11-18 57

Mobile hydraulics
Robert Bosch GmbH
Geschäftsbereich
Automationstechnik
Mobilhydraulik
Postfach 30 02 40
D-70442 Stuttgart
Fax +49 (0) 7 11 8 11-17 98

Pneumatics
Robert Bosch GmbH
Geschäftsbereich
Automationstechnik
Pneumatik
Postfach 30 02 40
D-70442 Stuttgart
Fax +49 (0) 7 11 8 11-2 45 30

Assembly technology
Robert Bosch GmbH
Geschäftsbereich
Automationstechnik
Montagetechnik
Postfach 30 02 07
D-70442 Stuttgart
Telefax +49 (0) 7 11 8 11-77 77

Drive and control technology
Robert Bosch GmbH
Geschäftsbereich
Automationstechnik
Antriebs- und Steuerungstechnik
Postfach 11 62
D-64701 Erbach
Fax +49 (0) 60 62 78-4 28

Tightening and press-fit systems-
Robert Bosch GmbH
Geschäftsbereich
Automationstechnik
Schraub- und Einpress-Systeme
Postfach 11 61
D-71534 Murrhardt
Fax +49 (0) 71 92 22-1 81

Deburring technology
Robert Bosch GmbH
Geschäftsbereich
Automationstechnik
Entgrattechnik
Postfach 30 02 07
D-70442 Stuttgart
Fax +49 (0) 7 11 8 11-3 34 75

AT-didactic
Robert Bosch GmbH
Geschäftsbereich
Automationstechnik
didactic
Berliner Straße 25
D-64701 Erbach
Fax +49 (0) 60 62 78-8 33

Robert Bosch GmbH
Geschäftsbereich
Automationstechnik
Antriebs- und Steuerungstechnik
Postfach 11 62
D-64701 Erbach
Fax +40 (0) 60 62 78-4 28

Your concessionary

Subject to technical modifications

1070 072 346-101 (01.04) GB · HB IN · AT/PLS · Printed in Germany

